An Unsupervised Algorithm For Learning Lie Group Transformations

نویسندگان

  • Jascha Sohl-Dickstein
  • Jimmy C. Wang
  • Bruno A. Olshausen
چکیده

We present several theoretical contributions which allow Lie groups to be fit to high dimensional datasets. Transformation operators are represented in their eigen-basis, reducing the computational complexity of parameter estimation to that of training a linear transformation model. A transformation specific “blurring” operator is introduced that allows inference to escape local minima via a smoothing of the transformation space. A penalty on traversed manifold distance is added which encourages the discovery of sparse, minimal distance, transformations between states. Both learning and inference are demonstrated using these methods for the full set of affine transformations on natural image patches. Transformation operators are then trained on natural video sequences. ar X iv :1 00 1. 10 27 v4 [ cs .C V ] 2 4 Ju l 2 01 4 It is shown that the learned video transformations provide a better description of interframe differences than the standard motion model based on rigid translation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning the Lie Groups of Visual Invariance

A fundamental problem in biological and machine vision is visual invariance: How are objects perceived to be the same despite transformations such as translations, rotations, and scaling? In this letter, we describe a new, unsupervised approach to learning invariances based on Lie group theory. Unlike traditional approaches that sacrifice information about transformations to achieve invariance,...

متن کامل

Learning Lie Groups for Invariant Visual Perception

One of the most important problems in visual perception is that of visual invariance: how are objects perceived to be the same despite undergoing transformations such as translations, rotations or scaling? In this paper, we describe a Bayesian method for learning invariances based on Lie group theory. We show that previous approaches based on first-order Taylor series expansions of inputs can b...

متن کامل

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

A Comparative Study of Dimensionality Reduction Methods: The Case of Music Similarity

In this paper, we investigate the performance of three unsupervised classification algorithms applied to musical data. They are first evaluated on the direct set of feature vectors that have been extracted from the original songs, and we try to highlight whether this data seems to lie on an embedded manifold or not. Furthermore, we try to enhance the obtained results by applying preprocessing t...

متن کامل

Unsupervised learning of a steerable basis for invariant image representations

There are two aspects to unsupervised learning of invariant representations of images: First, we can reduce the dimensionality of the representation by finding an optimal trade-off between temporal stability and informativeness. We show that the answer to this optimization problem is generally not unique so that there is still considerable freedom in choosing a suitable basis. Which of the many...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1001.1027  شماره 

صفحات  -

تاریخ انتشار 2010